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Abstract: Silver nanoparticles display unique physical and biological properties which
have attracted intensive research interest because of their important medical applications.
In this study silver nanoparticles (4b.Ag-NPs) were synthesized for biomedical
applications using a completely green biosynthetic method using Achillea biebersteinii
flowers extract. The structure and properties of 4bh.Ag-NPs were investigated using
UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta
potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic
analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver
nanoparticles. The average particle diameter as determined by TEM was found to be 12 + 2
nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis
also exhibits presentation of silver element. As angiogenesis is an important phenomenon
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and as growth factors imbalance in this process causes the acceleration of several diseases
including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat
aortic ring model. The results showed that 4h.Ag-NPs (200 pg/mL) lead to a 50%
reduction in the length and number of vessel-like structures. The synthesized silver
nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any
harmful chemicals were well-dispersed and stabilized through this green method and showed
potential therapeutic benefits against angiogenesis.
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1. Introduction

Currently, improving and protecting our environment using green chemistry have become important
issues in many fields of research [1]. In the field of nano-science, the use of various biological units
instead of toxic chemicals for the reduction and stabilization of metal nanoparticles, has received
extensive attention [2]. Biological entities, such as bacteria [3], fungi [4], yeasts [5], algae [6] or
plants [7,8], have been reported as serving as both reducing and stabilizing agents. Among these
possible bio- resources, biologically active products from plant resources represent excellent scaffolds
for this purpose [7]. Plant extracts, which are rich in bioactive compounds, have recently been used for
NPS green synthesis. Many different plant leaves and herbs for the synthesis of nanoparticles have
been reported [9]. The mechanism of biosynthesis of nanoparticles in plants may be associated with the
phytoremediation concept in plants [7]. The genus Achillea (Asteraceae) comprising ~85 species has
some interesting properties and has been known to be ethnopharmacologically used in folk medicine for
various purposes such as a diuretic, for abdominal pain, against diarrhea, flatulence, as an emmenagogue
and for wound healing [10]. Several biological activity studies have been performed on
various Achillea species, including antibacterial, antioxidant, anti-inflammatory and antispasmodic
activities [11,12]. Saeidnia et al. reviewed the medicinal properties of various species of Achillea [13],
while Si et al. reviewed the structures and biological properties of the known phytochemical
constituents of the Achillea species [14].

The most promising approach for generating new fields in biomedical sciences is the pharmaceutical
application of NPs [1]. Among metal NPs, nanosilver exhibits outstanding physical, chemical and
biological properties [15]. Ag-NPs have potential in treating a variety of diseases, including retinal
neovascularization, immunodeficiency syndrome [16], infection [17] and cancer [18]. The growth
factors imbalance is involved in the acceleration of several diseases including cancer, ocular, and
inflammatory diseases [19]. A promising methodology to hinder the progression of these diseases can
be through inhibiting angiogenesis.

The present study describes a green method using flowers of Achillea biebersteinii extracts for the
biosynthesis of Ag-NPs without any additive protecting nanoparticles from aggregating, template
shaping nanoparticles or accelerants. The current simple biosynthetic method using precursors from
flowers of Achillea biebersteinii provides high-yield nanosized materials. The characterization and
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formation mechanisms of Ag-NPs are discussed; moreover, the effects of synthesized NPs in the
capillary like formation of the rat aortic ring model were evaluated by observing the morphology.

2. Results and Discussion
2.1. Green Synthesis of Ag-NPs and Characterization

During the addition of the plant extract to the aqueous AgNOs solution, the color of the solution
reaction slowly changed from yellow-wish to a dark brown color, indicating the formation of Ag-NPs.
The appearance of the dark brown color may be due to the excitation of the surface plasmon resonance
(SPR) effect and the reduction of AgNO; [20].The UV-Vis absorption spectrum showed a strong
absorption peak centered at 460 nm which indicated the formation of Ag-NPs. (Figure 1). This
absorption is close to the absorbance peaks reported by Jha et al. [21] and Arunachalam et al. [22] to
synthesize silver nanoparticle using green methods. These nanoparticles were well dispersed without
adding different physical and chemical capping agents. The synthesized Ag-NPs from the flowers of
Achillea biebersteinii extracts (4b.Ag-NPs) were observed to be very stable in the solution, even one
month after their synthesis. Overall the best synthesized nanoparticles were mixed in a ratio of 1 plant
extract to 10 AgNO3 (5 mM) in 180 min.

Figure 1. UV-visible absorption spectra of 4b.Ag-NPs in different times.
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2.2. Morphology and Size Distribution of Nanoparticles

The TEM image Figure 2a and particle size distribution graph Figure 2b show that the Ag-NPs
formed were well dispersed with different shapes such as hexagonal, pentagonal and spherical
structures with particle sizes ranging from 5 to 35 nm with a mean size of 12.58 nm. The presence of
secondary materials can be seen from the capping with dark shades on the surface of nanoparticles,
which may be assigned to the bio-compounds present in the Ab extract. The bio-components within
the Ab not only result in the efficient reduction of silver salts to nanoparticles, but, likewise as an
appropriate capping agent, inhibiting them from aggregation [23]. The different bio-compounds
present in Ab extract such as polysaccharides, polyphenols, and proteins can produce nanoparticles
with different shapes [24].
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Figure 2. (a) TEM micrograph; and (b) particle size distributions of biosynthesized 4b.Ag-NPs.
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The zeta potential test was used to measure the electrophoretic mobility of each nanoparticle sample.
Complex zeta potential is a parameter that is used in the study of the surface charges and stability of NPs.
These charges greatly influence on the particle distribution and cellular uptake. A high absolute zeta
potential value indicates a high electric charge on the surface of the NPs. It describes strong repellent
forces among the particles, which prevent aggregation and lead to stabilizing the NPs in the medium.
The zeta potential of the nanoparticles formulated was only measured in systems that did not sediment
after overnight equilibration. At natural provision (pH = 7.2), the values for the zeta potential were —20
to —40 Mv. This result revaluated the synthesized silver nanoparticle that were stable due to the
electrostatic repulsion without adding a different physical or chemical capping agent. This is very

important for use for therapeutic propose (Figure 3).

Figure 3. The zeta potential of the biosynthesized Ab.Ag-NPs.
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The EDS spectrum detailed from the 4b.Ag-NPs is shown in Figure 4. The EDS spectrum reveals a
strong signal in the silver region and confirms the formation of silver nanoparticles. The Ag-NPs
generally show a sharp optical absorption peak approximately at approximately 3 KeV due to the
surface plasmon resonance. The other signals below 3 KeV are related to the binding energies of
bio-compounds on the surface of the Ag-NPs. Therefore, the EDS spectrum of 4b.Ag-NPs confirms
the presence of elemental compounds of the 4b extract and Ag nanoparticles without any impurity peaks.
The results indicate that the synthesized the 4b.Ag-NPs are of high purity.

Figure 4. EDS spectrum of bi-synthesized 4b.Ag-NPs.
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2.3. Effects of Ab.Ag-NPs on Number and Length of Capillary like Structures in Aortic Ring Assay

According to the results, high doses of 4b.Ag-NPs (200 pg/mL) lead to destroy the capillary like
and cell necrosis in the first hours of treatment a low dose (below 100 pg/mL) did not show any effects
on the length and number of the vessels formed. The 4b.Ag-NPs (200 pg/mL) lead to about a
50 percent decrease in number and length of the vessels (Figure 5a,b).

Figure 5. The effect of different concentrations of silver nanoparticles on length (a) and
number (b) of small vessels in the aortic ring model (** p <0.001).

180 70 -
160 I * o |

140
120
100
80
60
40
20
0

o
*
*
=p

50 +

T *%
40
*%
30 -
20 -
10 -
0 A T T T *% 1

contorol 100 pg/mL 200 pg/mL 300 ug/mL

*%

*%

contorol 100 pg/mL 200 pg/mL 300 pg/mL

Averge length of vessels
Averge number of vessels

Groups Groups




Molecules 2014, 19 4629

2.4. Effects of the Ab.Ag-NPs on Vessel’s Morphology

Microscopic observations of treated vessels showed distinct morphological changes indicating an
unhealthy organization in 200 pg/mL and higher concentrations, whereas the control appeared
normally (Figure 6a,c). After treatment with toxic dosages of nanoparticles, the endothelial cells that
make a vessel like structure, appeared to be clustered with a few cellular extensions, and cell-spreading
patterns were restricted compared to the control cells, this could be due to disturbances in the
cytoskeletal functions as a consequence of nanoparticle treatment. Similar results were observed by
other groups. Low doses of 4b.Ag-NPs did not show any effect on the vascular organization
(Figure 6b). The evidence showed that angiogenesis is critical for the growth and progression of solid
tumors because growth in tumor mass beyond 2 to 3 mm is often caused by an increase in the
formation of new blood vessels which is probably essential for the delivery of nutrients and oxygen to
the tumor microenvironment [25]. Therefore, anti-angiogenic therapy represents one of the most
promising approaches to control tumor growth and invasiveness. Different in vivo and in vitro assays
have been used so far in order to recognize the screen angiogenic activators and inhibitors and for the
development of the vascular system [26]. Commonly used in vivo models of angiogenesis include the
chorioallantoic membrane of the chick embryo (CAM assay), rabbit cornea, aortic ring and the
matrigel implant assay [27]. Nicosia and Ottinetti confirmed that rat aorta rings reproducibly generate
microvessel outgrowths in fibrin or collagen gels, and offer a sensitive assay for the investigation of
angiogenic agonists and antagonists in a chemically defined environment. Thus, this system bridges
the gap between in vitro and in vivo [27]. Angiogenic sprouting in aortic cultures is followed by
migration of adventitial macrophages and fibroblasts into the periaortic gel matrix. Once vessel sprouts
occur from the explants, they generate networks by elongating, forming anastomotic loops and
branching through endothelial migration and proliferation [27]. The angiogenic or anti-angiogenic
properties of the agent can be further demonstrated by embedding aortic endothelial cells in collagen
gel [28]. The present study demonstrated that silver nanoparticles have cytotoxic effects on the
endothelial cells. The 4b.Ag-NPs showed dose-dependent cytotoxicity against the endothelial cells.
Another study also showed that Ag-NPs lead to subtle obstructive effects to the microcirculation in the
chick embryo chorioallantoic membrane (CAM). These effects occurred without loss of embryo viability
and were associated with the partial preservation of the capillary diameters and connectivity [29]. Ag-NPs
could inhibit the vascular endothelial growth factor (VEGF)—induced bovine retinal endothelial cells
like migration, proliferation and capillary-like tube formation. Moreover, the Ag-NPs effectively
inhibited the formation of new blood micro vessels induced by VEGF in the mouse Matrigel plug
assay [19,30]. Similar studies have confirmed the inhibitory effect of Ag-NPs on the vascular
permeability induced by VEGF, interleukin (IL)-1p, in retinal endothelial cells [30]. These reports were
consistent with our finding. The mechanism may be due to induced apoptosis that affects the proteins and
enzymes with thiol groups like thioredoxin, SOD, thioredoxin peroxidase and glutathione, which are
responsible for neutralizing the oxidative stress of Reactive Oxygen Species (ROS) that are largely
generated by mitochondrial energy metabolism [18].
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Figure 6. The inhibitory effects of silver nanoparticles on appearances vascular like
appendages from the aortic rings. (a) Control; (b) The concentration of 50 pug/mL wasn’t
able to inhibit destroy vessel; (¢) modular inhibitory effect on 200 pg/mL; (d) Strong
inhibitory effect 300 pg/mL.
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3. Experimental
3.1. Materials

AgNO; was purchased from Merck (Darmstadt, Germany). Specimens of Achillea biebersteinii
were obtained from a local source. All the solutions were prepared with double distilled water. Other
chemicals were of analytical grade.

3.2. Extraction Preparation

The identification of Achillea biebersteinii was confirmed by a plant taxonomist from the herbarium
division of Ferdowsi University of Mashhad, where a sample was deposited with the voucher specimen
number 34,516. The flower parts of freshl Achillea biebersteinii were washed thoroughly three times with
double distilled water, and air-dried in the shade at room temperature for 14 days. For the production of
the extract, ground, freeze-dried Achillea biebersteinii samples (about 1 g) were boiled with DDW
(100 mL) in an Erlenmeyer flask while being continuously stirred for 15 min. The extract was cooled
to room temperature, filtered and used for the synthesis of Ag-NPs.

3.3. Synthesis and Characterization of Ag-NPs
3.3.1. The Biosynthesis of Silver Nanoparticles (Ag-NPs)

For the preparation of silver nanoparticles, AgNO; aqueous solution (5 mM) was mixed with
different volume of plant extract under continuous stirring at 40 °C. The color of the solution slowly
changed from grayish yellow to dark brown indicating the formation of silver nanoparticles.

3.3.2. Characterization Methods

The prepared Ag-NPs were monitored by UV-vis spectroscopy using a UV-vis spectrophotometer
system (Epoch Biotech, Winooski, VT, USA) in the wavelength range from 300-700 nm. Energy
Dispersive X-ray spectroscopy (EDS) was performed (XL 30; Philips, Eindhoven, The Netherlands) to
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study the composition of the product. The morphology and size of the synthesized Ag-NPs were
measured using a field emission scanning electron microscope by placing a drop of the nanoparticles
solution on the carbon coated copper gird and drying in air before transferring to the microscope. The
size of the distribution and the average size of 50 nanoparticles were estimated on the basis of three TEM
images with the assistance of Sigma-Scan Pro software (SPSS IBM, Statistics 20, IBM Corporation,
Endicott, NY, USA) The zeta-potentials of Ag-NPs in water were evaluated using CAD (Zeta compact,
Les Essarts-le-Roi, France). Samples were sonicated for 5 min before measurement to ensure that the
particles were well dispersed and that the dispersion was homogeneous.

3.4. Aortic Ring Assay
3.4.1. Type I Collagen Extraction

Type I collagen was extracted from rat-tails. The rat tails were obtained from the Research Center
for Animal Development Applied Biology, Islamic Azad University of Mashhad. Type I collagen was
first extracted using the modified method by Techatanawat et al. [31]. Briefly, the skin was removed
from the rat tail and the tendon taken from the tail was transferred to a sterile bottle with a stir bar and
dissolved by adding about 75 mL of distilled water (pH = 4) and stirred for 2 days at 4 °C. Then the
resulting viscous solution was centrifuged and stored at 4 °C for at most three months. The total
protein concentrations of the samples were determined using the Bradford protein assay.

3.4.2. Preparation of Collagen Matrix and Aortic Ring Culture

Angiogenesis was investigated by culturing the aortic ring in three-dimensional matrix gels. The aortas
were removed from 2—8 weeks old rats and immediately moved to a culture dish containing cold PBS.
The periaortic fibroadipose tissue was removed. The aorta was sectioned in 1-2 mm-long rings and
was embedded in a gel of rat tail collagen. The final collagen matrix was obtained by mixing 8 volumes
of collagen (4 mg/mL) with 1 volume of 10x DMEM, and 1 volume of NaHCO3, and kept at 37 °C for
20 min. Then, 50 uL of DMEM containing 30% FBS, and 100 U/mL penicillin-streptomycin was added
to each well. The cultures were kept at 37 °C in a humidified environment for a week and examined
every second day with an Inverted Microscope (Biomed, Seoul, Korea) at an appropriate magnification.

3.4.3. Anti-Angiogenesis Effects of Ag-NPs

Three days after the aortic ring culture when the first small vessels like protrusions became visible
silver nanoparticles were added to the wells with concentrations of 50, 100, 200 and 300 ug/mL, also
some wells were considered as well as the control. Over the 24 h the results were photographed using
an inverse microscope and digital camera (Canon, Tokyo, Japan). The length and number of the small
vessels like protrusions before and 24 h after treatment were obtained by image analysis performed
with the ImagelJ software package24. Statistical analyses were performed using SPSS software. The
results were shown as mean + SD and p < 0.05 was accepted as the level of significance.
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4. Conclusions

Angiogenesis has a central role in myocardial infarction, atherosclerosis, carcinogenesis, limb and
cardiac ischemia, and tumor growth. The development of new therapeutic strategies aimed at reducing
angiogenesis could therefore have serious clinical implications. In the present study Ag-NPs with an
average size of 12 + 2 nm were synthesized by means of a green method using an aqueous extract
containing phytochemicals as the reducing agent and efficient stabilizer. The characteristics of the
obtained 4b.Ag-NPs were studied using, UV-visible, EDX, TEM and zeta potential techniques.
The biosynthesis of Ag-NPs using green resources is a simple, environmentally friendly, low-cost and
non-toxic approach. The 4b.Ag-NPs showed anti-angiogenic properties in the rat aortic ring model.
Our findings indicate that Ag-NP may have potential therapeutic benefits as anti-angiogenesis agents.
Therefore these green Ag-NPs may potentially provide an attractive and cheap therapeutic alternative
for treating various conditions characterized by abnormal angiogenesis.
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