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ARTICLE INFO ABSTRACT

Keywords: Cerium is an important element whose various biomedical properties have been proven. The purpose of the

Breast cancer current study was to fabricate cerium oxide nanoparticles (CeO-NPs) using alginate and to investigate their anti-

Nanoparticle oxidant properties and cytotoxicity against breast cancer cells and human skin fibroblasts. Cerium oxide nano-

g)e,:::i:i}(;e particles were first synthesized using alginate, and their characteristics were then determined using XRD, FESEM,

Antioxidant DLS, and FITR techniques. The antioxidant capacity of the prepared nanoparticles was measured using the DPPH
biochemical method, and cytotoxicity was measured by the MTT method. Also, DAPI staining and annexin PI
staining via flow cytometry were used to determine the type of cell death. Our findings indicated that the
synthesized nanoparticles had ICsg values of 174, 32.5, and 16.07 ug/mL against the MCF-7 breast cancer cell
line at 24, 48, and 72 h after treatment, respectively. Cell cycle assessment via flow cytometry revealed that the
nanoparticles affected the ratio of the cells entering the apoptotic phase, supported by DAPI staining results
showing the apoptotic activity of the synthesized nanoparticles. In conclusion, our results suggest that CeO-NPs
can be considered as potential anti-cancer agents, and they are recommended to be further investigated in animal
studies.

Introduction exposure, as well as the type and growth stage of plant sources [21-24].

Cancer is considered one of the serious problems in today’s societies,
caused by the complex interactions of genetic, epigenetic, and envi-
ronmental factors [1-5]. The disease shows great diversity at the tissue,
tumor, and cellular levels, explaining variable responses to existing
treatments [6-8]. It is estimated that in 2030, cancer-related deaths will
reach about 15 million [9]. Although chemotherapy can help treat
cancer, the increase of multiple drug resistance (MDR) in cancer cells
and the side effects of anticancer drugs are among the most important
limitations of chemotherapy and major reasons for treatment failure
[10,11]. Breast cancer is the most prevalent and most dreadful malig-
nant disease among women worldwide, accounting for 23 % of all
cancers among females [12-15].

Recently, green preparation of nanoparticles, as a simple, low-cost,
and environmentally-friendly method and a replacement for physical
and chemical methods, has gained special attention [16-20]. The bio-
logical effects of nanoparticles depend on their composition, concen-
tration, size, physical and chemical properties, route and duration of
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In green synthesis, plants, algae, microorganisms, and their components
are used as regenerating agents to produce nanoparticles [25-28]. In
today’s cancer-targeted therapies, specifically designed nanoparticles
are used to penetrate cancer cells and more effectively deliver anti-
cancer drugs [29-31]. The distribution of nanoparticles is influenced
by various parameters, including their size and concentration within
cancer cells [32,33]. Cerium oxide nanoparticles are derived from
oxidized forms of this rare element (i.e., cerium) and are capable of
imitating the activity of superoxide dismutase and catalase owing to a
shift in surface oxygen vacancies and valence arrangement. So, these
nanoparticles can act as neutralizers of reactive oxygen species in many
biological contexts [34,35]. New frontiers have been opened for nano-
ceria particles in biomedical research, including cancer therapy, diag-
nostic modalities, biosensors, etc. [36,37].

Alginate is a general name that refers to a set of natural non-
branched polysaccharide polymers containing repeating units of $-D-
mannuronic acid (M) and a-L-guluronic acid (G) attached via al — 4
glycosidic bonds [38]. Another feature that has greatly favored the use
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of alginate as a bio-medical polymer, especially in recent years, is its
capability as a carrier for various drugs and bio-molecules [39,40].
Despite many recent advances in the field of disease control and treat-
ment, increased resistance of cancer cells to common therapeutics has
become one of the global challenges in the field of human health,
leading to undesirable responses to medications and failure of treatment
measures [41]. Therefore, it is inevitable to expand the drugs isolated
from natural products, which generally have fewer side effects and are
capable of being modified to achieve more efficacy [42]. Natural com-
pounds and their effective ingredients can be successfully used to treat
various cancers in hospitals [43].

The present study aimed to biosynthesize cerium nanoparticles using
alginate and then study their antioxidant and cytotoxic properties
against a breast cancer cell line. The current study’s novelty, or its
unique contribution to the field, is twofold. Green Synthesis of CeO-NPs
using alginate presents a new method for the synthesis of cerium oxide
nanoparticles (CeO-NPs) using alginate. In this study, alginate is used as
both a reducing and capping agent in the synthesis of CeO-NPs. This is a
“green” or environmentally friendly method of synthesis, which is a
significant advancement over traditional methods that often involve
harsh chemicals and conditions. The CeO-NPs synthesized in this study
also demonstrated significant cytotoxic effects against MCF-7 breast
cancer cell lines. In the context of cancer treatment, a substance that can
selectively kill cancer cells (like the MCF-7 breast cancer cells) without
harming healthy cells is of great interest. This finding suggests that the
CeO-NPs could potentially be used as a novel form of anticancer therapy.
While other studies have also explored the green synthesis of CeO-NPs
and their biomedical applications [44-46], the use of alginate as a
reducing and capping agent and the demonstrated cytotoxic effects
against MCF-7 breast cancer cell lines are unique aspects of this study.
These findings not only contribute to the existing body of knowledge on
CeO-NPs and their potential uses but also open up new avenues for
future research in the field of anticancer therapies.

Materials and methods

1,1-Diphenyl-2-picrylhydrazyl (DPPH) was obtained from Sigma
Chemicals Co. (St. Louis, MO, USA). Fetal bovine serum (FBS), trypsin,
Dulbecco’s Modified Eagle Medium (DMEM), antibiotic, 3,4,5-Dime-
thylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT), 4/, 6-diami-
dino-2-phenylindole (DAPI), and sodium alginate were obtained from
Sigma-Aldrich Company, Ltd. (Poole, United Kingdom). Annexin
V-FITC apoptosis detection kit (ab14085) was purchased from Abcam,
(Abcam Incorporated, Cambridge, MA). Other reagents were purchased
from Merck (Germany). Human breast cancer cell line (MCF-7) and
Human foreskin fibroblasts (HFF) were purchased from the Pasteur
Institute of Iran (Tehran, Iran).

Synthesis of nanoparticles

To prepare CeO-NPs, 8.68 g of Ce (NO3)3-6H20 salt was allowed to
react with 200 mL of aqueous alginate sodium. Next, CeO-O. alginate
was dried at 100 °C for 48 h, and finally, purified CeO-NPs were ob-
tained by heating at 450 °C for 4 h and collecting brownish color pellets.

Characterization of CeO-NPs

Synthesized CeO-NPs were characterized using common techniques
such as DLS, FESEM, XRD and FTIR [47]. The size of the NPs was
examined by applying a Zetasizer apparatus (Nano-ZS, Malvern, UK).
The morphology and the surface of CeO-NPs were seen by FESEM (JEOL,
Japan). The crystal phase and purity of CeO-NPs were determined by
applying Philips PW1800 X-ray diffractometer (XRD) (Almelo,
Netherlands). The functional group on the surface of CeO-NP was
determined by FTIR spectroscopy (Perkin Elmer, Waltham, MA, USA).
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Evaluation of antioxidant activity by the DPPH method

The antioxidant capacity of the biosynthesized NPs was investigated
by the DPPH radical scavenging method as reported by a previous study
[48]. Different concentration concentrations of CeO-NPs were mixed in
an equal volume of 0.1 mM of ethanol solution of DPPH. The mixture
was incubated for 30 min at room temperature, and then the absorbance
of the samples was read at 517 nm. Glutathione was used as a standard
antioxidant compound. All tests were performed in triplicate.

Cytotoxicity assay

The cytotoxicity of CeO-NP was investigated against the MCF-7
breast cancer cell line. Also, the human foreskin fibroblast (HFF) cell
line is used as a normal cell. Both cell lines were cultured in DMEM
medium which was supplemented with 10 % fetal bovine serum (FBS)
containing 100 UIl/ml streptomycin and 100 pg/ml penicillin. The cells
(5 x 10° cells/well) were seeded in 96-well plates and incubated at 37 °C
in 5 % CO; for 24 h. After 24 h, cells were treated in triplicate with
different concentrations of the CeO-NP and incubated for 24, 48, and 72
h. Finally, the cytotoxic activity was evaluated, using the MTT assay.
Briefly, the supernatant was removed and washed three times with
sterile 1x PBS. Then MTT solution (20 pL of a 5 mg/ml stock solution)
was added and incubated at 37 °C for 4 h. At the end supernatant was
discarded and produced formazan crystals were solved in 200 pL of
DMSO. The absorbance was read at 570 nm using a plate reader spec-
trophotometer (Epoch, Biotek, Winooski, VT, United Kingdom).

DAPI staining

DAPI is a fluorescent dye that strongly binds to adenine-thymine-
rich DNA sequences and is widely used in fluorescent microscopy. In this
study, DAPI staining was used to visualize the nuclei of the cells treated
with CeO-NPs and to check apoptosis, as well as chromatin condensation
or fragmentation in these cells compared to the control group.

Apoptosis determination by flowcytometry assay

During the apoptosis, phosphatidylserine translocates from the inner
to the outer layer of the plasma membrane. the use of annexin V together
with propidium iodide provides the possibility of distinguishing be-
tween necrosis and apoptosis [49]. Annexin V-FITC Kit (ab14085) was
used for this experiment. First, MCF7 cells were cultured in a 6-well
plate and 24 h later, the cells were treated with the effective concen-
trations of CeO-NPs for 24 h. Then the cells were transferred into
Eppendorf tubes, and centrifuged at 3000 rpm for five minutes by using
a Bio-Rad tabletop centrifuge. After discarding the supernatant by
aspiration, 500 pL of 1X Binding Buffer (provided by the kit) was added
to each sample, and then 5 pL of annexin V and 5 pL of propidium iodide
were added to each sample. The samples were taken for five minutes in a
dark place and finally analyzed by flow cytometry instrument (FACS-
Calibur, Becton Dickinson, USA [50].

Statistical analysis

Statistical analysis was performed by SPSS Software (version 22) via
one-way ANOVA and Duncan’s multiple comparisons post-hoc test. p-
value of < 0.05 was used as the cut-off for statistically significant ob-
servations. The results were represented as the mean + standard devi-
ation of three independent replications.
Results

Characterization

X-ray diffraction (XRD) is the best method used to analyze the crystal
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structure of a material and nanomaterial. The reference code 01-081-
0792 indicates a specific XRD pattern for Cerium Oxide, which can be
used for comparison and identification purposes. It provided valuable
insights into the synthesized CeOy-NPs crystal structure (Fig. 1). It
confirmed the prepared cerium oxide, with an empirical and chemical
formula of CeO,, belonged to the cubic crystal system with a space group
of Fm-3 m (space group number 225). The XRD pattern displayed
several diffraction peaks, each characterized by its Miller indices (hkl),
interplanar spacing (d [A]), 2-theta angle (2Theta [deg]), and intensity
(I [%]). Comparing the experimental values with the provided XRD
pattern, we observed some similarities and differences. The first peak,
indexed as (111), has an experimental 2-theta angle of 28.553(1)°,
which is a little higher than the theoretical value of 28.542 degrees. The
corresponding interplanar spacing is measured as 3.124 10\, which is near
to the theoretical value of 3.125 A. The experimental intensity is re-
ported as 100 %, matching the theoretical value. For the second peak,
indexed as (200), the experimental 2-theta angle is 33.093(3)°,
moderately higher than the theoretical value of 33.075°. The experi-
mental interplanar spacing is measured as 2.705 A, which is near the
theoretical value of 2.706 A. However, the experimental intensity is
reported as 32.55 %, higher than the theoretical value of 28.5 %. Similar
comparisons can be made for the remaining peaks (Table 1), taking into
account the experimental 2-theta values, interplanar spacings, and in-
tensities. Overall, while there are slight variations between the experi-
mental and theoretical values, the XRD pattern for Cerium Oxide (CeO2)
provided a good match with the experimental data, confirming the
crystal structure and aiding in the identification and characterization of
the compound.

The XRD analysis has demonstrated, we successfully synthesized
CeO2-NPs using alginate as a stabilizing agent. The morphology of the
synthesized nanoparticles was investigated using Field Emission Scan-
ning Electron Microscopy (FESEM). The FESEM images (Fig. 2) revealed
that the CeOy-NPs exhibited a predominantly spherical and semi-
spherical shape. However, it was observed that the nanoparticles were
highly agglomerated, forming clusters or aggregates. Fig. 3, which de-
picts the FESEM image, provides visual evidence of the agglomeration
phenomenon. The agglomerates appear as larger structures composed of
multiple nanoparticles clustered together.

In addition to the FESEM analysis, we also determined the size dis-
tribution of the synthesized CeO2-NPs using the dynamic light scattering
(DLS) technique. Fig. 3 displays the results obtained from the DLS
analysis, which revealed a narrow size distribution of the nanoparticles.
The average diameter of the CeO2-NPs was measured to be 83 nm,
indicating that the nanoparticles were predominantly in the nanoscale
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Table 1
The theoretical values related to crystal structure of the reference code’s XRD
pattern (01-081-0792).

No. h k 1 d [A] 2Theta[deg] 1[%]
1 1 1 1 3 28.542 100
2 2 0 0 3 33.075 28.5
3 2 2 0 2 47.475 45.8
4 3 1 1 2 56.332 36.1
5 2 2 2 2 59.078 7.1
6 4 0 0 1 69.401 5.8
7 3 3 1 1 76.685 12.5
8 4 2 0 1 79.06 8.7
9 4 2 2 1 88.41 10.3

range. The polydispersity index (PDI) value of 0.192 suggests a rela-
tively uniform size distribution, indicating minimal variation in particle
sizes. To improve the dispersity of the CeO2-NPs, we employed a probe
sonicator, which is a common technique used to disperse and break up
agglomerates in liquid suspensions. The DLS analysis showed that the
use of the probe sonicator resulted in good dispersity of the nano-
particles in the liquid phase. This suggests that the agglomeration
observed in the FESEM images, which were obtained from the solid
phase, was reduced when the nanoparticles were dispersed in a liquid
medium. The comparison between the FESEM images and the DLS
analysis highlights the difference in the agglomeration behavior of the
CeO2-NPs between the solid and liquid phases. The FESEM images
showed that the nanoparticles were highly agglomerated in the solid
phase, forming clusters or aggregates. However, the DLS analysis indi-
cated that the nanoparticles had good dispersity in the liquid phase, with
a narrow size distribution. This difference can be attributed to the in-
fluence of the surrounding medium. In the solid phase, the nanoparticles
may experience stronger attractive forces and limited mobility, leading
to increased agglomeration. However, when dispersed in a liquid me-
dium, the nanoparticles experience reduced interparticle interactions
and increased Brownian motion, resulting in improved dispersity and
reduced agglomeration. The combination of FESEM and DLS analyses
provided a comprehensive understanding of the morphology and size
distribution of the CeO2-NPs. While the FESEM images revealed
agglomeration in the solid phase, the DLS analysis demonstrated good
dispersity in the liquid phase after using a probe sonicator. This infor-
mation is crucial for optimizing the synthesis process and understanding
the behavior of the CeO,-NPs in different environments.

The FTIR (Fourier Transform Infrared) spectrum of the CeOy-NPs
provided valuable information about the chemical composition and
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Fig. 1. XRD spectrum analysis of cerium oxide nanoparticles synthesized by alginate.
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Fig. 2. FESEM imaging of cerium oxide nanoparticle synthesized by alginate.
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Fig. 3. DLS method, Dispersion of cerium nanoparticles synthesized
by alginate.

surface characteristics of the nanoparticles (Fig. 4). One of the observed
bands at 425 cm™! corresponds to a characteristic vibration related to
the cubic crystalline form of rare earth oxides, specifically CeO,-NPs.
This band confirmed the presence of cerium oxide bonds in the nano-
particles. The band observed at 1446 cm™! represented the N = O
stretching vibration, which suggested the presence of a small amount of
nitrate in the prepared sample. The band that appeared at 2969 cm ™! is
assigned to the C-H stretching vibration of the residual biopolymer. This
band suggested the presence of organic materials, possibly residual
alginate, on the surface of the CeO,-NPs. Lastly, the band at 3310 em !
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Fig. 4. FTIR spectra of cerium oxide nanoparticle synthesized by alginate.

corresponded to the stretching vibration of H-bonded water molecules.
This peak indicated the presence of absorbed water molecules that were
physically connected to the surface of the CeO,-NPs [44,51,52]. In
summary, The FTIR bands in the CeO,-NPs spectrum suggested the
presence of cerium oxide bonds, residual organic materials, and absor-
bed water molecules. This information provides insights into the
chemical composition and surface characteristics of the CeO,-NPs,
which is valuable for understanding their properties and potential
applications.

Free radical scavenging capacity of CeO-NPs

2,2-diphenyl-1-picrylhydrazyl (DPPH), is a radical scavenger
because it can accept electrons from reactive radicals. The mechanism of
DPPH free radical scavenging may be very complex because the DPPH
molecules not only can react with electrophile reagents but also can
react with hydroxyl radicals. The antioxidant capacity of compounds
was recorded based on photobleaching of DPPH at 517 nm. The anti-
oxidant capacity of CeO-NPs was determined by the DPPH free radical
scavenging assay (Fig. 5). The results indicated that green synthesized
NPs significantly inhibited DPPH free radicals in a dose-dependent
manner. The IC50 of CeO-NPs (i.e., the concentration inhibiting 50 %
of DPPH free radicals) was obtained at 31.25 pg/mL. Glutathione was
used as a positive control in this experiment.
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Fig. 5. DPPH scavenging assay of CeO-NPs synthesized by alginate. Gluta-
thione was used as a positive control. The experiment was conducted
in triplicate.
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Evaluation of cytotoxicity

The cytotoxicity of the CeO-NPs synthesized was performed against a
breast cancer cell line (MCF-7) and a normal cell line (HFF). First cells
were treated with different concentrations of CeO-NPs ranging from 0 to
300 pg/mL. During the period of 24, 48, and 72 h the viability of cells
was checked using MTT assay. According to the results present in Fig. 6,
the viability of MCF-7 cells was significantly inhibited in the presence of
CeO-NP in a dose-dependent manner, while HFF cells were less prone to
the presence of CeO-NPs as compared to the cancerous cells. Evaluation
of the viability of MCF-7 cells demonstrated ICsg values of 174, 32.5, and
16.07 ug/mL at 24, 48, and 72 h after treatment, respectively (Fig. 6).

Morphological examination by DAPI fluorescent staining

The results of the cell toxicity assay represented that CeO-NPs
effectively inhibited the growth of cancer cells, prompting further
evaluations of possible toxicity mechanisms against the MCF-7 cell line.
Morphological changes in MCF-7 cells (as shown by DAPI staining)
treated with different concentrations of CeO-NPs including 0, 87, 174,
and 348 pg/ml have been shown in Fig. 7 prominent morphological
changes, including plasma membrane blebbing, cell shrinkage, and
destruction of cells were observed in cancerous cells exposed to CeO-NPs
for 24 h, suggesting apoptotic cell death. The nuclei of the cells were
examined by a fluorescent microscope. In the control group (i.e., no
treatment), the nuclei of the cells were observed to be uniform and
intact. The results showed that increasing concentrations of CeO-NPs led
the nuclei of the cells to become fragmented and decomposed.

Cell death evaluation by the annexin V-FITC assay

Flow cytometry assay of the MCF-7 cancer cells treated with 87, 174,
and 348 pg/mL of CeO-NPs revealed that primary apoptosis, secondary
apoptosis, and necrosis were observed in 2.9 %, 15.6 %, and 2.2 % of the
cells exposed to the 87 pg/mL concentration and 3.5 %, 32.2 %, and 2.5
% of the cells treated with the 174 pg/mL concentration, respectively.
Finally, in the cells treated with the 348 pg/mL concentration, more
than half of the cells underwent secondary apoptosis while necrosis was
noticed in > 33 % of the cells (Fig. 8).

Discussion

Today, the growing resistance of cancers to ordinary treatments has
become a serious problem, and existing treatments have failed to meet
the therapeutic requirements demanded by most types of cancers
[53-55]. So, the use of new technologies for preventing and treating
cancer can be a solution [56-58]. Resistance of cancer cells to chemical
drugs and chemotherapeutics is a main cause of treatment failure,
highlighting requirements for extensive research and development on
more efficient drugs with fewer side effects [59,60]. Among various
metal oxide nanoparticles, ceria nanoparticles have attracted
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considerable attention and interest due to their unique properties such
as radical scavenging activity and a wide range of other biological ef-
fects, offering promising medical and biomedical applications for these
nanoparticles [61,62]. In the present study, CeO-NPs were fabricated
using alginate and characterized by multiple techniques, including DLS,
XRD, and FESEM, which confirmed the nano-scale of the NPs synthe-
sized. The MTT cytotoxicity assay showed that CeO-NPs were efficient in
preventing the growth of MCF-7 breast cancer cells compared with
normal cells, which was supported by morphological changes observed
in these cells. A recent study performed by Nourmohammadi et al.
demonstrated the cell toxicity effects of CeO-NPs against mouse fibro-
sarcoma cell line [63]. Various similar studies have shown the anti-
cancer possibility of CuO-NPs against different cancer cell lines [64]. In
another research, Hijaz et al. investigated the effects of cerium nano-
particles on the A2780 ovarian cancer cell line, reporting concentration-
dependent growth inhibitory effects [65]. Also, cytotoxicity and growth
inhibitory effects were observed against other ovarian cancer cell lines
(SKOV3, OVCAR 3, and C200) as well.

Cerium nanoparticles are metal-based compounds reported to have
toxicity against a variety of cancer cells by inhibiting their growth and
invasion, sensitizing them to radiation and chemotherapy, protecting
these cells against reactive oxygen species (ROS), and inducing
apoptosis in cancerous cells [66-69]. When assessing how different
synthesis techniques affect the effectiveness of CeO-NPs in cellular in-
hibition or apoptosis, it’s crucial to distinguish between the outcomes
produced by green synthesis and chemical synthesis methods. Green
synthesis, which utilizes natural compounds as reducing and capping
agents, often results in nanoparticles with diverse size distributions and
morphologies [70]. These variations can significantly impact their sur-
face area and reactivity, influencing their interactions with cells and
their ability to inhibit or induce cell death. In contrast, chemical syn-
thesis may introduce more defects or impurities, potentially altering the
cytotoxicity of the nanoparticles. Furthermore, the surface chemistry of
green-synthesized nanoparticles, influenced by biological molecules,
can enhance biocompatibility and enable targeted delivery to cells, thus
increasing their therapeutic potential [71]. Additionally, the antioxidant
and antimicrobial properties displayed by green-synthesized nano-
particles are crucial for biomedical applications, particularly in cancer
therapy. Finally, it’s important to consider the environmental impact of
nanoparticle production. Green synthesis offers a more sustainable and
eco-friendly approach, underscoring its significance beyond mere pro-
cedural considerations [72]. Ultimately, the choice of synthesis method
plays a pivotal role in shaping the therapeutic effectiveness and range of
applications of CeO-NPs [73,74]. In a study, Nasiri et al. investigated the
cytotoxicity of CeO-NPs at different concentrations and times against
HT29 clone cancer cells and showed that the nanoparticles offered the
most potent toxicity at concentrations between 12.5 and 100 mg/mL in a
time- and concentration-dependent manner, arguing that at longer
exposure times, the nanoparticles had more opportunity to enter the
cells and exert their toxicity effects (e.g., via inducing oxidative stress
and producing toxic oxygen radicals). Sandeep et al. (2014) investigated
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Fig. 6. Cell toxicity of ceo-nps at different concentrations against the breast cancer cell MCF-7 and HFF cell lines. Results are presented as the mean + SD (n = 3).
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Fig. 7. Stages of cancer cell death. A) Control group: the nuclei of the cells are intact and unchanged. B) Cells treated with the 87 pg/mL concentration: the ar-
rowheads indicate MCF-7 cancer cells, showing no specific morphological changes. C) Cell treated with the 174 pg/mL concentration: arrowheads indicate shrunken
small (shiny) and apoptotic MCF-7 cancer cells, reflecting chromatin fragmentation. D) Cells treated with the 348 pg/mL concentration: the nucleus of most cancer

cells showed fragmentation, indicating cell death.

the effects of cerium nanoparticles on lung cancer cells (A549) and
showed that these nanoparticles exerted significant toxicity and
morphological changes in these cells. The HCT116 colorectal cancer
cells exposed to different concentrations (5, 10, 20, 40, 60, 80, and 100
pg/mL) of cerium nanoparticles underwent apoptotic cell death
(confirmed via Annexin V test and DAPI staining) with an IC50 equal to
50.48 ug/mlL, revealing more toxicity compared to most available
anticancer drugs [75]. In 2022, Javid et al. investigated the toxicity of
cerium nanoparticles against esophageal cancer cells (the YM1 and CSC-
LC cell lines), reporting that cerium nanoparticles triggered cell death in
a dose- and time-dependent manner in cancerous cells while they had no
adverse effects on normal cells, suggesting the potential role of CeO-NPs
as an effective anticancer treatment. In general, further studies,
including animal and clinical studies, are required to elucidate the
antitumor mechanisms employed by CeO-NPs in various cancers.

The study presented herein, while comprehensive, acknowledges
certain limitations that must be considered. Firstly, the synthesis and
characterization of cerium oxide nanoparticles using alginate were
confined to specific analytical techniques, which may not encompass the
full spectrum of nanoparticle behavior. Secondly, the cytotoxicity as-
sessments were limited to in vitro conditions, which do not fully repli-
cate the complex in vivo environment. The observed anticancer effects
against MCF-7 breast cancer cell lines, while promising, require vali-
dation through in vivo studies to confirm efficacy and safety. Addi-
tionally, the antioxidant properties were measured using a single
method, and further studies employing a variety of assays are recom-
mended to provide a more comprehensive understanding of the nano-
particles’ capabilities. Lastly, the potential impact of CeO-NPs on the

environment and long-term biocompatibility remains to be thoroughly
investigated. These limitations highlight the need for further research to
explore the full potential and implications of CeO-NPs in biomedical
applications.

Conclusion

This study presents an eco-friendly approach to synthesizing cerium
oxide nanoparticles (CeO-NPs) using alginate, a natural polymer. The
synthesized CeO-NPs were characterized by various techniques, con-
firming their nanoscale size (83 nm) and spherical morphology. The
antioxidant activity was demonstrated with an IC50 of 31.25 pg/mL in
the DPPH assay, indicating a potent ability to neutralize free radicals.
The cytotoxic potential of CeO-NPs was evaluated against MCF-7 breast
cancer cells, revealing significant inhibitory effects in a dose- and time-
dependent manner, with IC50 values of 174, 32.5, and 16.07 pg/mL at
24, 48, and 72 h’ post-treatment, respectively. Additionally, the nano-
particles induced apoptosis in cancer cells, as evidenced by DAPI
staining and flow cytometry. These findings underscore the promise of
CeO-NPs as chemotherapeutic agents, with their ability to selectively
target cancer cells while exhibiting minimal toxicity towards normal
cells. While our findings are promising, further research is necessary to
fully understand the mechanisms behind the anticancer activity of CeO-
NPs. Future studies should focus on testing the CeO-NPs in animal
models to evaluate their efficacy and safety profile in a living organism,
elucidating the precise biochemical pathways through which CeO-NPs
exert their cytotoxic effects on cancer cells. developing targeted de-
livery systems for CeO-NPs to minimize potential side effects and
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Fig. 8. Death rate in MCF-7 cancer cells treated with cerium nanoparticles: (A) The control group (non-treated MCF-7 cancer cells). More than 91 % of the cells were
alive (i.e., apoptosis rate = 9 %, probably caused by the stress of displacement). MCF-7 cancer cells treated with 77 pg/mL (B) (viable cells > 75 %, apoptosis rate = 3
%), 174 pg/mL (C) (viable cells = 62 %, apoptosis rate < 4 %), and 348 pg/mL (D) (viable cells < 13 %, apoptosis rate > 5 %) concentrations.

enhance therapeutic outcomes, and finally investigating the synergistic
effects of CeO-NPs when combined with conventional chemotherapy or
other nanomedicine-based therapies. By addressing these areas, we can
pave the way for CeO-NPs to become a viable option in the arsenal of
anticancer treatments. The potential of CeO-NPs as chemotherapeutic
agents warrants further exploration, with the ultimate goal of trans-
lating these findings into clinical applications.
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